PH1

Question			Marking details	Marks Available
3	(a)	(i)	12 Joules per coulomb (1)	
			Supplied from cell / source / battery / chemical to electrical (1)	2
		(ii)	Energy lost in the resistance of cell	1
	(b)		$\left\{\frac{3.6(1)}{120}\right\} \quad=0.03[\Omega](1)$	2
	(c)		$I=\frac{12}{0.03}=400[\mathrm{~A}] \quad$ ecf from (b)	1
	(d)	(i)	$Q=3 \times\left[\left(16 \times 60^{2}\right)\right.$ or $\left.57600(1)\right]$	
			$=172800[\mathrm{C}]$ (1)	2
		(ii)	$t=\frac{172,800}{120} \quad=1440 \text { seconds } / 24 \text { mins UNIT mark }$	1
			Allow ecf from (d) (i)	
			Question 3 Total	[9]

Question			Marking details	Marks Available
4	(a)		All 4 positions considered, 2 relevant statements per position	
			At start (A) $E_{\text {Grav }}-\max$ $E_{k}-$ zero $E_{\text {Elastic }}-$ zero	
			$\begin{gather*} \text { Free fall, Cord slack(B) }\left(\begin{array}{c} E_{\text {Grav }}-\text { decreasing } \\ \\ E_{k}-\text { increasing } \\ E_{\text {Elassic }}-\text { zero } \end{array}\right. \end{gather*}$	
			Cord stretching (C) $\quad E_{\text {Grav }}-$ decreasing E_{k} - increasing or decreasing $E_{\text {Elastic }}$ - increasing	
			$\begin{array}{ll} \text { At lowest point (D) } & E_{\text {Grav }}-\text { minimum (accept zero if explained) } \\ & E_{k}-\text { zero } \tag{1}\\ & E_{\text {Elastic }}-\text { maximum } \end{array}$	
			$5^{\text {th }}$ mark available for other general comment e.g. Some of initial energy lost due to air resistance / rope gets hot (1) Don't accept statement of the conservation of energy on its own.	5
	(b)		$\begin{aligned} E_{p \text { loss }} & =70 \times 9.8[1] \times 130(1) \text { substitution }\left(\text { not } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & =89271[\mathrm{~J}](1)(\operatorname{accept} 89300 \text { or } 89000) \end{aligned}$	2
		(ii)	$89271=1 / 2 k(50)^{2}(2)\left[1\right.$ mark for $E_{p \text { loss }}=\frac{1}{2} k x^{2} ; 1$ mark for $\left.50[\mathrm{~m}]\right]$ $k=71.4\left[\mathrm{~N} \mathrm{~m}^{-1}\right]$ (1) ecf from (b)(i)	3
		(iii)	$m g=k x(1) \quad=\frac{70 \times 9.81}{71.4}=9.6[\mathrm{~m}]$ (1) ecf on k from (b)(ii) N.B. Only penalise once for use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$	2
			Question 4 total	[12]

Question			Marking details	Marks Available
5	(a)	(i)	$v_{\mathrm{H}}=16 \cos 40^{\circ}(1) \quad=12.3\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	
			$v_{\mathrm{V}}=16 \sin 40^{\circ}(1) \quad=10.3\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	2
		(ii)	Horizontal: constant velocity Vertical: acceleration / changing (both statements required)	1
	(b)	(i)	$\begin{aligned} & 0=10.3-1.6 t \text { (1) ecf from (a)(i) penalise only once for use of } 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & t=6.4[\mathrm{~s}] \end{aligned}$	
			$t_{\text {flight }}=12.8[\mathrm{~s}]$ (1) ecf between $2^{\text {nd }}$ and $3^{\text {rd }}$ marks Or any other alternative method used to gain correct answer $=3$ marks	3
		(ii) (iii)	$\begin{array}{ll} D_{\mathrm{H}}=12.3 \times 12.8=157[\mathrm{~m}] & \text { ecf from }(\mathrm{b})(\mathrm{i}) \\ 0=(10.3)^{2}-2 \times 1.6 \mathrm{~s}(1) & \text { ecf from }(\mathrm{a})(\mathrm{i}) \end{array}$	1
			$S=33.2[\mathrm{~m}] \quad$ (1)	2
	(c)		Air resistance on Earth (1)	
			g on Earth different (accept greater) than on the Moon (1)	2
			Question 5 Total	[11]

Question		Marking details	Marks Available
(d)	(i)	 Axes labelled with units (1); Points plotted correctly to within $\pm 1 / 2$ square division (1); Line (1) Area attempted (1) $(1.4 \times 10)+(1 / 2 \times 10 \times[9.8-14])$ $14+42=56\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)($ accept range $52-60)$ $504=\frac{1.2 \times D \times 56^{2}}{2}$ substitution (1) allow ecf on $F_{\text {drag }}$ and v $D=0.27\left[\mathrm{~m}^{2}\right](1)($ accept range $0.23-0.31)$ Question 7 total	3 2 2 [17]

