PMT

D	Н 1	
T	111	L

Question			Marking details					Marks Available	
1	(a)	(i)	$I \propto V(1)$						
			Providing	the temperature / physical condi	tions re	main co	nstant (1	l)	2
		(ii)	V A ⁻¹ circ	led					1
	<i>(b)</i>	(i)		Switch combination	P	Q	S		
				X open, Y open	On	On	Off		
				X closed, Y open	Off	On	Off	(1)	
				X open, Y closed	On	On	On	(1)	
				X closed, Y closed	Off	On	On	(1)	
							1	1	3
		(ii)	Either R =	$=\frac{9}{0.18} (1) (= 50 \Omega) \longrightarrow R_1$	$_{\rm P} + R_{\rm Q} =$	= 50 (1)		
			<i>R</i> _{each} buzz	ther = $25[\Omega]$ (1) ecf between 2^{nd}	and 3 rd	marks			
			Or $R = \frac{4}{6}$	$\frac{5(1)}{0.18}(1) = 25[\Omega](1)$					3
		(iii)	$R_{\text{Total}} = 16$	$\frac{2}{2}[\Omega](1)$ $I = \frac{9}{2} = 0.54$	[A] (1)				
			ecf from (b)(ii) / no ecf for R_{Total}					2	
		(iv)	<u>Either</u> ecf from (b)(ii) or (b)(iii) or both						
			$P_{\rm S} = \left(\frac{2}{3} \ge 0.54\right)^2 \ge 25$ (1) $P_{\rm S} = 3.24$ [W]						
			$P_{\rm Q} = \left(\frac{1}{3} \ge 0.54\right)^2 \ge 25$ (1) $P_{\rm Q} = 0.81$ [W]						
			<u>Or</u>	Or					
			$P_{\rm S} = \frac{9^2}{25} (1) = 3.24 [\text{W}]$ $P_{\rm Q} = \frac{4.5^2}{25} (1) = 0.81 [\text{W}]$						
			<u>Or</u>						
			$P_{\rm S} = \frac{2}{3} \ge 0.54 \ge 9$ (1)= 3.24 [W] $P_{\rm Q} = \frac{1}{3} \ge 0.54 \ge 4.5$ (1) = 0.81 [W]						
			$\rightarrow \frac{3.24}{0.81} = 4 (1) \qquad \text{or any correct algebraic solution} = 3 \text{ marks}$					3	
			Question	1 total					[14]

© WJEC CBAC Ltd.

Question			Marking details	Marks Available	
2	(a)		A material with zero/negligible resistance		
	<i>(b)</i>	(i)	Transition temperature (accept critical temperature)		
	(c)	(ii) (iii)	(R) Transition temperature \checkmark labelled Transition temperature \checkmark labelled Shape \checkmark - straight line, nearly vertical drop. (T) If axes labelled, must be correct. 0 / negligible / almost zero Collisions between <u>free/delocalised/flowing/conducting</u> electrons and ions/atoms in lattice/atoms/particles (1) increase vibrations of ions /atoms / particles or electrons transfer <u>KE</u> to ions (1)	2 1 2	
			Question 2 Total	[7]	

Question			Marking details	Marks Available
3	(a)	(i)	<u>12</u> Joules per coulomb (1)	
			Supplied from cell / source / battery / chemical to electrical (1)	2
		(ii)	Energy lost in the resistance of cell	1
	(b)		$\left\{\frac{3.6(1)}{120}\right\} = 0.03 \ [\Omega] \ (1)$	2
	(c)		$I = \frac{12}{0.03} = 400 [A]$ ecf from (b)	1
	(d)	(i)	$Q = 3 \text{ x} [(16 \text{ x} 60^2) \text{ or } 57 600 (1)]$	
			= 172800 [C] (1)	2
		(ii)	$t = \frac{172,800}{120}$ = 1440 seconds / 24 mins UNIT mark	1
			Allow ecf from (d) (i)	
			Question 3 Total	[9]

© WJEC CBAC Ltd.

_		
Г	7 <i>1</i> 7	
-	- IVI I	
•		

Question			Marking details		Marks Available
4	(a)		All 4 positions considered, 2 relevant statements per position		
			<u>At start</u> (A)	$E_{Grav} - \max$ $E_{k} - \operatorname{zero}$ $E_{Elastic} - \operatorname{zero}$ (1)	
			Free fall, Cord slack(B)	$E_{Grav} - \text{decreasing} E_k - \text{increasing} (1) E_{Elastic} - \text{zero}$	
			Cord stretching (C)	$E_{Grav} - \text{decreasing}$ $E_k - \text{increasing or decreasing} \qquad (1)$ $E_{Elastic} - \text{increasing}$	
			At lowest point (D)	$E_{Grav} - \text{minimum (accept zero if explained)}$ $E_k - \text{zero}$ $E_{Elastic} - \text{maximum}$ (1)	
			5 th mark available for oth lost due to air resistance conservation of energy o	her general comment e.g. Some of initial energy / rope gets hot (1) Don't accept statement of the n its own.	5
	<i>(b)</i>	(i)	$E_{p \text{ loss}} = 70 \text{ x } 9.8[1] \text{ x}$	130 (1) substitution (not $g = 10 \text{ m s}^{-2}$)	
			= 89 271 [J] (1)	(accept 89 300 or 89 000)	2
		(ii)	$89271 = \frac{1}{2} k (50)^2 (2)$	[1 mark for $E_{p \log s} = \frac{1}{2} kx^2$; 1 mark for 50 [m]]	
			$k = 71.4 [\text{N m}^{-1}]$ (1) ecf	f from (b)(i)	3
		(iii)	$mg = kx(1) = \frac{70x}{7}$ N.B. Only penalise once	$\frac{49.81}{1.4} = 9.6 \text{ [m] (1)} \text{ ecf on } k \text{ from (b)(ii)}$ for use of $g = 10 \text{ m s}^{-2}$	2
			Question 4 total		[12]

Question			Marking details	Marks Available
5	(a)	(i)	$v_{\rm H} = 16 \cos 40^{\circ} (1) = 12.3 [{\rm m s^{-1}}]$	
			$v_{\rm V} = 16 \sin 40^{\circ} (1) = 10.3 [{\rm m s}^{-1}]$	2
		(ii)	Horizontal:constant velocityVertical:acceleration / changing (both statements required)	1
	<i>(b)</i>	(i)	0 = 10.3 - 1.6 t (1) ecf from (a)(i) penalise only once for use of 9.8 m s ⁻²	
			t = 6.4 [s] (1)	
			$t_{\text{flight}} = 12.8 \text{ [s]} (1) \text{ ecf between } 2^{\text{nd}} \text{ and } 3^{\text{rd}} \text{ marks}$ Or any other alternative method used to gain correct answer = 3 marks	3
		(ii)	$D_{\rm H} = 12.3 \text{ x } 12.8 = 157 \text{ [m]}$ ecf from (b)(i)	1
		(iii)	$0 = (10.3)^2 - 2 \times 1.6 \text{ s} (1)$ ecf from (a)(i)	
			S = 33.2[m] (1)	2
	(c)		Air resistance on Earth (1)	
			g on Earth different (accept greater) than on the Moon (1)	2
			Question 5 Total	[11]

Question			Marking details	Marks Available
7	(a)		$F \rightarrow \text{kg m s}^{-2}$ (1)	
			$\rho \rightarrow \text{kg m}^{-3}(1), v^2 \rightarrow \text{m}^2 \text{ s}^{-2}(1)$	
			Correct manipulation / cancelling seen $\rightarrow m^2(1)$	4
	<i>(b)</i>	(i)	Correct statement of Newton's 3 rd Law	1
		(ii)	 <u>May</u> not have same magnitude Forces act on same object Forces not of same type (e.g. not two 'g' forces or contact forces) Don't accept : They are not equal unless qualified 	
			Only one statement required.	1
	(c)	(i)	60 x 9.8 = 588 N unit mark	1
		(ii)	$F_{\rm res} = W - F_{\rm drag}$ implied in any correct form (1)	
			$F_{\text{drag}} = 588 - [(60 \text{ x } 1.4)(1)] \text{ ecf from (c)(i)}$	
			$F_{\rm drag} = 504 [\rm N] (1)$	3

Question Marking details			Marking details	Marks Available
	<i>(d)</i>	(i)	Acceleration lns ²	
			Axes labelled with units (1); Points plotted correctly to within $\pm \frac{1}{2}$ square division (1); Line (1)	3
		(ii)	Area attempted (1) (1.4 x 10) + ($\frac{1}{2}$ x 10 x [9.8-14])	
			$14 + 42 = 56 [m s^{-1}] (1) (accept range 52 - 60)$	2
		(iii)	$504 = \frac{1.2 \text{ x } D \text{ x } 56^2}{2} \text{substitution (1) allow ecf on } F_{\text{drag}} \text{ and } v$	
			$D = 0.27 [\text{m}^2] (1) (\text{accept range } 0.23 - 0.31)$	2
			Question 7 total	[17]